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HARP: A Fast Spectral Partitioner

Horst D. Simon 1, Andrew Sohn 2, Rupak Biswas 3

Abstract - Partitioning unstructured graphs is central to the parallel
solution of computational science and engineering problems. Spec-
tral partitioners, such re,cursive spectral bisection (RSB), have
proven effective in generating high-quality partitions of realistical-
ly-sized meshes. The major problem which hindered their wide-
spread use was their long execution times. This paper presents a new
inertial spectral partitioner, called HARP. The main objective of the
proposed approach is to quickly partition the meshes at runtime in a
manner that works efficiently for real applications in the context of
distributed-memory machines. The underlying principle of HARP is
to find the eigenvectors of the unpartitioned vertices and then project
them onto the eigenvectors of the original mesh. Results for various
meshes ranging in size from 1000 to 100,000 vertices indicate that
HARP can indeed partition meshes rapidly at runtime. Experimental
results show that our largest mesh can be partitioned sequentially in
only a few seconds on anSP2 which is several times faster than other
spectral partitioners while maintaining the solution quality of the
proven RSB method. A parallel MPI version of HARP has also been
implemented on IBM SP2 and Cray T3E. Parallel HARP, running
on 64 processors SP2 and T3E, can partition a mesh containing more
than 100,000 vertices into 64 subgrids in about halfa second. These
results indicate that graph partitioning can now be truly embedded
in dynamically-changing real-world applications.

1 Introduction

One of the most difficult problems to implement on a distributed
memory parallel machine is a problem with a dynamically changing
data structure, which requires repeated load balancing and which is
coupled to an implicit computational solver [23]. This situation is
typical for applications in computational fluid dynamics or compu-
tational structuralmechanics,which involvegrid adaptation,
automaticmesh refinementormultizonalgridtechnologies[3].An

importantaspectoftheoverallimplementationofsuchdynamically
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changing applications, is the partitioning of the underlying grid.
Mesh or graph partitioning algorithms for static grids have been ex-
tensively investigated in the last five years, and significant progress
has been made both in improved heuristic algorithms, as well as in
high quality software, In this paper we want to show, how a partic-
ularly successful approach for graph partitioning based on spectral
algorithms can be extended to handle the dynamic case. Our goal is
to combine the overall effectiveness of the spectral type partitioners
in terms of reducing the outsize of the partition, with some tech-
niques, which use the dynamic character of the calculation to also
produce a fast repartitioning of the grid.

The most general approach to mesh partitioning is to use generic
combinatorial optimization techniques based on a cost function.
Two methods that yield good suboptimal solutions are simulated an-
nealing (SA) [16] and genetic algorithms (GA) [17]. SA is
analogous to a method in statistical mechanics designed to simulate
the slow cooling of a physical system. It works by iteratively propos-
ing new partitions, evaluating their quality, and accepting them
based on the Metropolis criterion. The method requires several user-
specified parameters that makes it difficult to fred good partitions in
a problem-independent manner. GA are a model of machine learn-
ing which derives its behavior from the processes of evolution in
nature. Such methods start with an initial population of randomly-
generated partitionings. New partitionings are then generated from
the current population using the natural processes of reproduction,
crossover, and mutation. Individual partitionings that contribute to
the minimization of an objective function are more likely to repro-
duce. Once again, a large number of parameters must be set for a
successful partition. In general stochastic optimization techniques
when used on their own, can be slow, trapped in local minima, and
depend on many application-specific parameters. However, these
methods may be very useful in free tuning an existing partition.

Another intuitive approach to mesh partitioning is to use cluster-
ing techniques. The nearest-neighbor algorithm in [19] generates
initial clusters so that neighboring grid points are assigned to the
same or neighboring partitions. These clusters are then modified us-
ing a boundary refinement procedure to improve the partitions. The
greedy algorithm in [8] grows the first partition from a given starting
point until the correct number of grid points has been included. Con-
struction of the next partition begins from the boundary of the
previous partition until the whole domain is decomposed. Despite its
simplicity, it often yields partitions with low edge cuts. Since it is
not a recursive process and the partitioning time is independent of
the number of partitions, this algorithm is considered one of the fast-
est partitioners. Bandwidth reduction algorithms also belong to this
class of mesh partitioning techniques. Essentially, if the mesh ele-
ments are renumbered to reduce the bandwidth of the adjacency
matrix, a lexicographic decomposition of the mesh can be performed
to obtain good partitions. The Reverse Cuthill-McKee (RCM) order-
ing scheme [5] is one of the most popular methods for bandwidth
reduction; however, subdomains usually have bad aspect ratios. This
problem can be reduced if the scheme is used recursiveiy, as in re-
cursive graph bisection (RGB) [22]. Two vertices at maximal or
near-maximal distance in the graph are first determined. All other
vertices are then sorted by distance from one of these extremal ver-
tices, and partitioned to two subdomains. The RCM scheme is used



to fred the level structure, a convenient way of organizing the verti-
ces in sets of increasing distance from one of the extremal vertices.

The class of geometry-based bisection algorithms recursively di-
vide the mesh into two parts by exploiting its geometric properties.
Recursive coordinate bisection (RCB) [22] sorts the mesh vertices
according to their coordinates in the direction of the longest spatial
extent of the domain. Half the vertices are then assigned to each sub-
domain, and the process is repeated recursively. This is a simple and
intuitive technique, but one which provides poor separators as a re-
sult of excluding all graphical information. Inertial recursive
bisection (IRB) [6] instead considers the inertial coordinate system,
where the origin is the center of gravity of the mesh. The vertices are
considered point masses with mass values set to the vertex weights.
The vertices are then orthogonally projected onto the principle axis
of this structure, and sorted into two sets. This technique is more ex-
pensive than RCB but generally produces much better results. IRB
is especially used in conjunction with local refinement strategies
such as the Kernighan-Lin (KL) heuristic [15]. Repeated pairwise
exchanges are performed on an initial partition to improve the qual-
ity. A salient feature of KL is that sequences of perturbations are
considered rather than single exchanges to bypass local minima.

A considerably less intuitive class of mesh partitioning algorithms
are based on spectral methods. The most widely-used technique is
Recursive Spectral Bisection (RSB) [22] that is derived from agraph
bisection strategy [18] based on a specific eigenvector of the Lapla-
clan matrix of the graph. In particular, the eigenvector
corresponding to the second smallest eigenvalue gives some direc-
tional information about the graph. The special properties of this
eigenvector have been extensively investigated by Fiedler [10];
hence, called the Fiedler vector. The computational challenge of the
RSB algorithm is the efficient calculation of the Fiedler vector. RSB
is regarded as one of the best partitioners due to its generality and
high quality; however, the method is very expensive since it requires
computing the Fiedler vector at each recursive step. The multidi-
mensional spectral partitioning (MSP) [12] algorithm improves
RSB by considering several cuts at each recursive step. For example,
it can perform spectral octasection to partition a graph into eight sets
using three eigenvectors. MSP requires less computations than RSB
to generate the same partitions; however, they are still too slow for
many applications. These algorithms are often combined with KL to
improve the free details of the partition boundaries.

The partitioning time for large meshes can be considerably re-
duced by contracting the graph. Multilevel algorithms reduce the
size of the mesh by collapsing edges, partitioning the smaller graph,
and then uncoarsening it back to obtain a partition for the original
mesh. The most sophisticated schemes use a sequence of successive-
ly smaller contracted meshes, and smooth the partitions using KL
during the uneoarsening phase. The multilevel implementation of
RSB, called MRSB [2], calculates the Fiedler vector for the coarsest
grape and then prolongates it for the original mesh. Alternative
graph contraction strategies are described in [12,25], but they all use
spectral methods on the coarsest mesh. The fastest multilevel
scheme to date is MeTiS [14], which claims to produce partitions
that are of higher quality than those generated by spectral partition-
ing schemes. MeTiS uses heavy edge matching during the
coarsening phase, a greedy graph growing algorithm for partitioning
the coarsest mesh, and a combination of boundary greedy and KL re-
finement during the uncoarsening phase.

The HARP algorithm which will be discussed in this paper can be
described in the context of the above approaches to graph partition-
ing fairly easily, as a combination of the efficiency of spectral
algorithms (in terms of finding small outsets), with the speed of IRB.
A very closely related algorithm has been proposed in [4]. We will
explore the relationship of HARP with spectral algorithms in section
2. In section 3 we will discuss the serial and parallel versions of
HARP in more detail, and in section 4 we will present some numer-

ical results. After a comparison to other (static) partitioning
algorithms, we are going to demonstrate in section 6 the perfor-
mance of HARP in the framework of an unstructured adaptive mesh
refinement code for computational fluid dynamics, which solves for
the flow around a helicopter blade.

2 Motivation and General Description of the Algorithm

2.1. Laplacian Eigenvectors as Euclidean Coordinates

The first important element in motivating and understanding the
HARP algorithm is to take a fresh look at the geometric interpreta-
tion of the Laplacian eigenvectors. The view we take here is that the
first several eigenvectors of the Laplaeian matrix of a graph can be
viewed as coordinates in Euclidean space. This view has been taken
as early as [21], and was implicitly present in many investigations of
spectral algorithms. For example spectral quadra and octasection as
proposed by Hendricksen and Leland [13] can be viewed as taking
the first two or three nontrivial eigenvectors of the Laplacian matrix
of a graph as coordinates of the vertices of the graph in the plane or
in three dimensional space. Qudraseetion is then equivalent to fred-
hag a rotation and translation of the plane so that the new coordinate
axis partition the vertices into four equal sets. Use of spectral coor-
dinates makes the resulting cut sets relatively small.

Similarly, Chan, Gilbert, and Teng [4] used the Laplacian eigen-
vectors as Euclidean coordinates, and then performed inertial
bisection with respect to this coordinate system. HARP differs from
that in [4] in two ways, both related to the fact that we also consider
the Laplaeian eigenvalues:

(a) HARP does not a priori make a decision on the number of
eigenvectors to compute. Instead. HARP compares the magnitude of
the corresponding eigenvalue to the smallest nonzero Laplacian
eigenvalue. Eigenvalues which have grown above a certain thresh-
old are discarded. Our numerical results in section 4.1 indicate that
even for very large graphs, a few (less than a hundred) eigenvalues
are sufficient to capture the global properties of the graph. A physi-
cal analogue of this procedure is the dynamic analysis in structural
engineering. It is common engineering practice to compute a few of
the smallest eigenvalues and vectors of the finite element model of
a large structure, and then use the subspaee spanned by these few
eigenvectors for an analysis of the dynamic response of the structure
to wind loading or to an earthquake. HARP uses a similar heuristic
argument to claim that the essential features of a graph are represent-
ed in a relatively small subspace spanned by the smallest Laplaeian
eigenvectors.

(b) After a set of smallest elgenvectors has been selected, HARP
uses the sealed eigenvectors as coordinates. Each eigenvector is
scaled by square root of the inverse of corresponding elgenvalue.
We call Laplacian eigenvectors scaled in this way the spectral coor-
dinates of the graph. In this way the eigenvector corresponding to
the smallest non-zero eigenvalue, which is often called Fiedler vec-
tor, will be the most heavily weighted coordinate direction. Since the
Fiedler vector has been proven to be useful for partitioning in many
experiments, this scaling of the vectors results in emphasizing the
most important coordinate direction for bisection.

Another way to motivate the scaling by the values is that in this
way we construct the best low rank approximation to the (pseudo)
inverse of the Laplacian matrix. This of course begs the question
what relationship there is between the (pseudo) inverse of the Lapla-
clan matrix of a graph and any geometric embedding in Euclidean
space. There are some more involved relationships, which will be
discussed in a forthcoming paper.

We have thus argued that Laplacian coordinates are a canonical
way to embed a graph in Euclidean space, and that recursive inertial
bisection using this new coordinate system is an effective partition-
ing algorithm, which combines the efficiency of RSB with the speed
of recursive inertial bisection. We will demonstrate this with a set of
numerical tests on some standard meshes in section 4.
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2.2 Dynamic Partitioning

So far all we have constructed is yet another static partitioner and

added just another new variation to the existing knowledge, In order

to make this partitioner useful in the context of a dynamically chang-

ing calculation, we need to make two additional observations.

Observation 1 For many (but not all) dynamically changing cal-

culations, the changing computational load can be easily expressed

as a graph partitioning problem with dynamically changing vertex

weights. For example, in a simple case of adaptive unstructured grid

calculations with triangular elements, we can consider the coarsest

mesh as the one to be used with a graph partitioner, all dements be-

ing weighted equally with one. If the mesh gets refined at a later

stage in the calculation, we don't need to partition the refined mesh.

We can equally well partition the coarse mesh, but change the vertex

weights: Any refined triangle will now have the weight four (or any
other weight reflective of the increased amount of calculation for the

refined mesh). This implies that we would not partition across a re-

fined dement. Even though this may be suboptimal from the

partitioning point of view, it is very sensible from an implementa-

tion point of view, since we do not want to split the data structures
associated with a refined element across multiple processors.

There is one set of applications where this model of changing ver-

tex weights does not apply: these are applications where topological

changes occur. In the finite dement world, the canonical example

would be crash codes, where previously: disconnected: parts of a
mesh may have contact and then interact. This situation is discussed

in detail by Diniz et al. [7], who also present a distributed memory

implementation. Our approach is not well suited to handle topolog-

ical changes.
Observation 2 The success of many practical implementations of

graph partitioning algorithms rests on the appheation of multilevd

schemes, as was discussed in section 1. Multilevel schemes work,

because even a very coarse approximation of the graph can given

some very good general information about how to optimally parti-

tion the graph in a global sense.
Combining these observations is the foundation for the HARP al-

gorithm for dynamic partitioning. HARP consists of two parts:

(a) Precomputation of the spectral basis. We compute once and
for all a spectral basis set of eigenvectors for the coarsest mesh in a

given simulation. Although this calculation may be costly, it needs
to be done only once for a given mesh. Since the same geometry and
the same mesh are often used over and over again for design studies,

the cost of the initial eigenvector calculation can be amortized over

many simulations. Inour current work we perform the initial eigen-
vector calculation with a shift-and-invert Lanczos algorithm

described in [11]. We claim that the spectral basis, even for a coarse

graph, captures the essential features of the graph, and can be used

for effective partitioning.
(b) Repartitioning because of dynamic changes. At any time dur-

ing the simulation when the characteristics of the calculation are

changing because of refinement, derefmement, adaptation, etc. we

compute a new vertex weight vector corresponding to the changed

computational load. We repartition the graph with recursive inertial

bisection in the spectral coordinates for the coarsest mesh. The

change in vertex weights will affect the load balancing and hence the

distribution of partitions, but it does not affect the initially comput-

ed spectral coordinates. Hence the repartitiooing step is very fast,
but continues to have the spectral information available, which make

repartitioning also very efficient, and comparable to spectral

partitioners.

3 The HARP Algorithm

We will not discuss the precomputation phase here. This is well doc-

umented elsewhere, and we simply used a Cray library routine on

the C90 to precompute the eigenvectors. Instead, we will list the ex-
ecution times of the eigen solver for the meshes used in the report.

As was mentioned before, the serial version of the repartitioning

is essentially equivalent to inertial recursive bisection ORB). Our

implementation follows exactly this algorithm as described in [9].

The only difference is that IRB in [9] was physically motivated, i.e.

based on a physical meaningful mesh with coordinates in three di-

mensional Euclidean space. Here we are using spectral coordinates

in a generally larger than three dimensional space, with a cut-off de-

pending on the growth of the Laplacian eigenvalues.
Inertial recursive bisection involves several components: The

original eigenvector evee[vlIn], where n is the number of eigenvec-

tors of the grid and v is the number of vertices. Given the original n

eigenvectors, the inertial center center[n] of the unpartitioned verti-
ces will be computed, and in turn the inertial matrix inertialnl[n].
Inertial center eenterln] needs n components each of which bears the

inertial distance between the vertices and the center. Inerlia[n][n] in-

dicates how far the n inertial vectors are away from each other. The

following algorithm briefly outlines HARP.

for (i--0; i<iog(npert); i-H-) {/* npart = tOtal # of partitions */
for (j=0; j<2_; j-H-) {
1 Find an inertial center of the unpartitioned vertices
2 Construct an inertial matrix using the inertial vector

3 Symmetrize the inertial matrix
4 Find the eigenvectors of the inertial matrix
5 Project the vertex coordinates

on the dominant inertial direction (eigenvector 0)
6 Sort the projected coordinates
7 Divide the unpartitioned vertices into two sets

according to the sorted values
}

Specifically, each step of the inner loop can be implemented as
follows:

for (i=O; i<v; i-H-) /* find inertial center */
for (j=0; j<n; j-H-) center[i] = centerlil + evec[i]lil;

for (i--0;i<v;i++) { /* compute the inertial distance */

for (j=O;j<n;j++)
for (k=O;k<n;k++)

inertia[l][k] = inertialj'][k] +
(evec_='J[I]- center[i]) * (evec[i][kl - center[k]);

for (i=O;i<n;i-H-) /" symrnetrize the inertial matrix */
for (j=i+l ;j<n;j++) inertiah'l[i] = inertia[i]O];

inertiaLeioenvoctor[n] =
compute the dominant eigenvector of inertia[n][n];

for (i--O; i<v; i++) /* project */

for (j=O; j<n; j++)
key_] = keylii + evec[i]_J * inertial_eigenvector[l'J;

sort key in an ascending order using float radix sorting;

split the sorted key into halt;
place the two partitions each into an appropriate place.

The steps listed above are only for presentation purposes. Numer-
ous steps are missing from the steps as they will unnecessarily

complicate the understanding of the overall organization. Two rou-
tines of TFIED2 and TOLl are used to find eigen vectors. They are

derived from EISPACK, the eigen system subroutine package.

TRED2 subroutine reduces a real symmetric matrix to a symmetric

tridiagonal matrix using and accumulating orthogonal similarity
transformations. TOLl subroutine finds the eigenvalues and eigen-

vectors of a symmetric tridiagonal matrix by the OL method. A 32-

bit float radix sorting is used in the sorting step. We have written this

routine from scratch. The float radix sorting is based on W_,EE float-

ing point standard, where bits 0..22 are significand, the bits 23..30

are exponent, and the bit31 is the sign bit. The radix of eight bits (the
bucket size of 256) is used in the implementation.
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Before we discuss the performance of HARP, we shall briefly

identify how each of the above steps performs in terms of execution
time. The most time consuming step is the inertial matrix computa-

tion step, which consists of three nested loops. The second most
time-consuming step is sorting. It appears that the eigen solver can
be a major bottleneck but it turned out trivial. For small problem size
of below 10,000 vertices, the eigen solver can be of significance.
However, for large problem sizes, the solver is a fraction of the over-
all computation time. We list some plots in Fig. 1 to show the

distribution of the individual steps.

The results in Fig. 1 indicate that the majority of the times is spent

on computing the inertial matrix of the unpartitioned vertices.
Again, the second most time consuming step is the sorting step
which occupies approximately 20%. There is a slight difference for
the two grids. For a larger grid, the sorting time increases. As we
shall come back to this issue later, the main target of parallel HARP
is therefore the inertial computation time.

A parallel version of HARP has been designed and implemented
on SP-2 [1] and T3E [20]. Two types of parallelism are used: loop
level parallelism and recursive parallelism. The primary objective of
reporting the parallel version in this paper is to demonstrate that
HARP can be effectively parallelized and used in parallel environ-

ments. Significant performance improvement is expected in the near
future. Porting a working SP-2 version of HARP to T3E was not
straight forward due to some difference in machine architecture and
compiler. Readjustment and even recoding of some functions were
needed especially for floating point radix sorting. The details of par-
ailel HARP are not included in this report. Instead, we will list some
experimental results in the following sections.

Two of the five modules of HARP have been parallclized to date.
In iteration 0, all the eight processors work together to find the iner-
tial center of the unpartitioned vertices. This step is the most
expensive since it involves all the unpartitioned vertices and their
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Figure 1: Time distribution on a single processor SP2.

original eigenvectors in order to find their relative position in M-di-

mensional space. In comparison, the second step of finding the eigen
vectors of the inertial matrix of dimension M is relatively trivial for

large meshes and is therefore not parallelized. The third step, where

the vertex coordinates of the unpartitioned vertices are projected

onto the major inertial direction (corresponding to eigenvector 0) is

somewhat expensive, and has also been parallelized. Sorting is still

done sequentially in the current parallel version of HARP. The final

step, where the unpartitioned vertices are divided into two sets, re-

quires a negligible amount of time and is thus not paralleiized. The

most time-consuming modules of parallel HARP are to find the in-

ertial matrix of the unpartitioned vertices, to project them onto the

dominant inertial direction, and to sort the projected coordinates.

This can be seen from the histograms in Fig. 2.

The current parallel version parallelizes ordy the inertial matrix

construction and the projection modules. These still require 31% and

17% of the total time, respectively. Sorting is done sequentially in

the current version, and constitutes more than 47% of the total par-

titioning time. The sorting module will be parallelized in the future
that will result in significant performance improvement. There is

also scope for substantial improvement in the first step where block-

ing send/receive commands are used.

4 Results

Thsee test meshes and their characteristics are first listed in:the sec-

tion. The interplay betwwen the number of eigenvectors and the

partition quality is explained using 128 partitions, followed by the
realtionship between the number of partitions and partition quality

4.1 Test meshes and experimental settings

To verify the performance of HARP, we have done substantial ex-

perimentation over the last three years. The IBM SP-2 installed at
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Type, 2D or 3D

Number of vertices V

Number of edges E

SPIRAL LABARRE STRUT BARTH5 HSCTL

2D 2D 3D 2D 3D

1200 7959 14,504 30,269 31,736

3191 22,936 57,387 44,929 142,776

Table 1: Characteristics of the seven test meshes.

MACH95 FORD2

3D

60,968

118,527

3D

100,196

222,246

NASA Ames Research Center and the Cray T3E installed at NER-

SC, Lawrence Berkeley Laboratory are used in this study. While the

main emphasis of this report is on the evaluation of the new HARP

algorithm, we will briefly present some parallel results in the context

of dynamically-changing adaptive mesh computations.
Seven different two- and three-dimensional test meshes are used

in this study. They varied in size from 1200 vertices to more than
100,000 vertices. Table 1 shows the characteristics of the test mesh-

es. SPIRAL is a very small toy grid which is a long chain

geometrically arranged in a spiral. This mesh has no computational

significance other than to serve as a difficult test case for partition-
ers. STRUT is a three-dimensional mesh used in civil engineering

problems for structural analysis. BARTH5 is a dual graph for a four-
element airfoil. HscI_ is a 3-dirnensional mesh for a high-speed

civil transport configuration. MACH95 is a tetrahedral mesh around

a helicopter rotor blade. FORD2 is a surface mesh of a Ford car.

Table 2 lists the precomputation times of the eigen solver for the

test meshes on a C90. The eigenvectors are computed in the precom-

putation stage. Once they are computed, they are used over and over

again for the next experiments.

Test

meshes

SPIRAL

LABARRE

STRUT

BARTH5

HSCTL

MACH95

FORD2

10 eigenvectors

mem time

0.3 0.54

2.1 4.25

3.9 8.50

7.6 15.40

9.1 23.11

39.2 192.68

26.7 60.25

20 eigenvectors

mem time

0.4 0.98

2.2 6.25

4.2 17.26

8.2 22.04

9.8 29.48

40.5 209.56

28.7 84.39

100 eigenveetors

mem time

0.6 4.71

3.5 29.73

6.5 55.63

13.0 104.03

14.8 144.93

50.1 687.89

44.6 386.52

Table 2: Precomputation times on Cray C90, performed once and for
all. (mere = memory size in mega words; time in seconds.)

We note from the table that the eigenvector computation times are
not substantial considering that they are done once and only once for

the lifetime of the meshes. The maximum memory usage is also lim-

ited to 50 mega words on Cray C90. It should be noted that the

eigensolver time does not linearly increase as the number of eigen-

vectors increases. For example, the solving time of Ford2 is 60

seconds for 10 eigenvectors. When the number of eigenvectors is in-

creased to 100, the solving time is increased slightly more than 6

times. This relatively slow rate of increase indicates that solving

more than 100 eigenvectors is not prohibitively expensive if such

number of eigenvectors is desired. As we will shows shortly, we find

that 10 eigenvectors are suitable for our purposes.

Two parameters characterize the performance of all graph parti-

tioning algorithms: the number of cut edges C and the total

partitioning time T. Throughout this report, we will compare these

parameters whenever appropriate.

We have performed three types of experiments. First, we identify

the partition quality in terms of the number of eigenvectors that are
used. Results do not depend on whether the serial or the parailel ver-

sion of HARP is used. The experiment is thus performed on a single

processor. Both the number of cut edges and the execution time will

be presented to identify the trade-off between partition quality and

execution time. Second, we idemify the partition quality across dif-

ferent grids when the number of eigenvectors remain fixed. This

experiment is also independent of sequential or parallel settings. It

is thus performed on a single processor. Third, we run the parallel
version of HARP on more than one processor. Partition quality re-

mains unchanged from that for the serial version. Only the execution

time will therefore be investigated.

Several other parameters are used throughout the study: V is the
number of vertices, E is the number of edges, M is the number of

elgenvectors of the original grid, P is the number of processors, and

S is the number of sets (or partitions). The words sets and partitions

are used interchangeably throughout this paper.

4.2 Number of eigenvectors and partition quafity

Figure 3 illustrates the effect of the number of eigenvectors used on
the partition quality and the execution time for 128 partitions. Both
the number of edges cut and the execution time are normalized by

their respective values when using only one eigenvector. It is clear
that the solution quality improves for all the meshes except SPIRAL

as the number of eigenvectors is increased. There is a drastic change

1.0

0.8

¢0 0.6

0.4

0.2

0.0 0
5

_" 3

2 4 6 8 10 12 14 16 18 20
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--v-- MACH95 (60968, 118527) /_ j
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STRUT (14504, 57387) /# _z///ff_
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Figure 3: Effect of the number of eigenvectors on the number

of cut edges and execution time for 128 sets.
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when two eigenvectors are used instead of one. A gradual improve-

ment is noticed for up to 10 eigenvectors. There is very little

reduction in the number of cut edges beyond M=10. The reason that

the partition quality for SPIRAL remains essentially unchanged is be-

cause it is geometrically a spiral in cartesian coordinates. However,

in eigenspace, it is a long chain and its spectral property can be cap-

tured with only one eigenvector.

The execution time, on the other hand, keeps increasing as the

number of eigenvectors increases. For 20 eigenvectors, the execu-
tion time has increased almost four-fold. There is a clear trade-off

between the solution quality and the execution time. In fact, we

reach a point of diminishing returns beyond a certain number of

eigenvectors. The partition quality improves only slightly at the cost

of significantly higher execution time.

Table 3 shows the absolute number of edge cuts and the execution

time for MACH95. The execution times are for a single processor of

an SP2. The table clearly indicates that increasing the number of

eigenvectors is beneficial for the partition quality. However, doing

so will significantly increase the partitioning time. This time and

quality trade-off has been observed for other meshes.

4.3 Number of partitions and partition quality

In the previous section, we examined the relationship between the

number of eigenvectors used and the partition quality for 128 parti-
tions across the seven meshes. In this section, we look at how the

number of eigenvectors affects the quality in terms of number of

partitions. Figure 4 presents the number of cut edges and the execu-
tion time for two meshes: HSCTL and FORD2.

Four observations can be made from the results in Fig. 4. First, the

partition quality improves as the number of partitions increases. See-
ond, when the two meshes are cross-compared, the larger meshes

# of Edge cuts Execution time

partitions 1 EV 2 EVs 4 EVs 6 EVs 8 EVs 10 EVs 20 EVs 1 EV 2 EVs 4 EVs 6 EVs 8 EVs 10 EVs 20 EVs

2 817 817 817 817 817 817 817 0.186 0.193 0.202 0.223 0.249 0.298 0.614

4 2442 1657 1657 1657 1657 1657 1657 0.360 0.372 0.390 0.433 0.484 0.583 1.214

8 5734 3283 3514 3773 3733 3728 3786 0.543 0.553 0.580 0.647 0.724 0.871 1.823

16 12312 5020 5431 5770 5693 5685 5784 0.729 0.741 0.777 0.867 0.970 1.166 2.442
32 25441 8443 8710 8827 8662 8145 7866 0.920 0.927 0.973 1.084 1.213 1.460 3.073

64 51651 13495 13404 12577 12818 10798 10741 1.110 1.117 1.173 1.309 1.469 1.769 3.735

128 72512 18542 19743 15874 15822 14803 14930 1.304 1.298 1.368 1.538 1.730 2.089 4.483
256 74109 28059 28798 21405 21870 20204 20118 1.491 1.483 1.571 1.782 2.018 2.489 5.260

Table 3: Effects of the number of eigenvectors on edge cuts and execution time for MACH95 on a single-processor SP-2.

co
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1.4 HSCTL (31736,142776) HSCTL (31736,142776)
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Figure 4: Effects of the number of eigenvectors on edge cuts and execution time for different number of partitions.
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shows greater improvement in quality with more partitions. This is

because we have more fine-grained control on how the partitions are

generated. Third, the conclusions about partition quality versus the

number of eigenvectors that were drawn from Fig. 3 for 128 parti-

tions hold true for any number of partitions. Fourth, it should be
noted that the nature of the normalized execution time does not

change across different meshes. Contrary to the expectation of in-
creased execution time, larger meshes tend to give lower execution

time as the number of eigen vectors increases. Furthermore, as the

number of elgen vectors increases, the execution times tend to settle

in, resulting in less fluctuation.

5 Comparative Performance of HARP

The performance of both serial and parallel HARP is analyzed in the

section. The serial version of HARP is first compared against anoth-

er serial mesh.partitioner. Preliminary results of parallel HARP are

presented to demonstrate that HARP can be effectively paraUelized

on large-scale distributed-memory multiprocessors. The HARP re-

suits are based on 10 elgen vectors.

5.1 Serial performance of HARP

The HARP results are compared with the MeTiS2.0 multilevel par-

titioner. All HARP results in this section are based on 10

eigenvectors, and are denoted as HARPa. Two parameters are used
for comparison: number of edge cuts and partitioning time. All exe-

cution times are based on a single-processor SP2. Tables 4 and 5

show the absolute numbers of edge cuts and execution times on SP2.

Table 6 shows the execution times of HARP on a Cray T3E. We

fred from the table that the T3E results are comparable to SP2 results
listed in Table 5. The difference in the execution results comes from

the machine's absolute performance and compiler optimization. SP2

consists of Power2 processors which can issue up to six instructions

per clock while T3E consists of DEC Alpha 21164 processors which

can issue up to four instructions per clock. The higher superscalar

capability coupled with wider memory bandwidth has contributed to

the higher performance on SP2.

#of sets Spiral Labarre Strut Barth5 Hsctl Maeh95 Ford2

2 0.005 0.036 0.069 0.144 0.151 0.288 0.477

4 0.010 0.081 0.152 0.313 0.331 0.643 1.052

8 0.017 0.125 0.227 0.479 0.501 0.997 1.621

16 0.025 0.168 0.298 . 0.635 0.665 1.342 2.188
32 0.037 0.215 0.366 0.782 0.818 1.664 2.748

64 0.056 0,268 0.442 0.928 0.971 1.975 3.266
128 0.089 0.340 0.534 1.086 1.132 2.280 3.761

256 0.149 0.441 0.656 1.281 1.324 2.609 4.270

Table 6: Execution times of HARPot in seconds on a single-proces-

sor T3E, using 10 eigenvectors_

Figure 5 plots the ratio of HARPer to MeTiS2.0. Figure 5(a)

shows that HARPer gives partitions that are of poorer quality than
MeTiS2.0. We find that the maximum overall difference is between

30% and 40%. It should he noted however that the HARPtx results

are based on 10 eigenvectors.

The execution times shown in Fig. 5(b) indicate that HARPot is
more than twice as fast as MeTiS2.0. As we shall discuss in the next

section, this is precisely the purpose of developing HARP. Since dy-

namically-changing computations require rapid runtime mesh

repartitioning, this fast algorithm is perfectly suitable for our pur-
poses. The fact that the partition quality is somewhat poor is not a

major concem when dealing with adaptive computations. Since rep-

artitioning has to be performed fairly frequently, it is more important

to decrease the partitioning time than reducing the number of cuts.

5.2 Parallel performance of HARP

The main target of a preliminary version of parallel HARP is the step

that computes the inertial matrix of the unpartitioned vertices. This

module has been parallelized, as well as the projection step. A brief

profile of the execution times for the individual modules for the se-

quential and parallel versions of HARP are shown in Figs. 1 and 2.
The sorting step is the most expensive module in parallel HARP as

it requires almost half the total execution time. Our next step, there-

fore, is to parallelize the sorting step.

# of SPIRAL LABARRE STRUT BARTH5 HSCI'L MACH95 FORD2

sets HARPer Me"I3S2 HARPer Me'lqS2 HARPer MeTiS2 HARPer MeTiS2 HARPer Me'lqS2 HARPer MeTiS2 HARPer Me'lqS2

2 9 9 169 144 82 82 109 86 1484 576 817 815 324 379

4 29 29 423 325 539 528 296 201 1958 1322 1657 1623 911 817
8 67 65 759 530 1027 1005 513 381 3180 2393 3731 3161 1826 1303

16 151 145 1150 864 1970 1939 855 588 5770 4371 5687 4600 3062 2146

32 301 290 1775 1381 3757 3261 1315 985 9652 6970 8664 6128 4732 3203

64 623 589 2667 2132 6879 4947 2012 1561 15896 10306 11557 8467 7561 4928

128 1234 985 4093 3227 8723 7287 3186 2427 22454 15102 15001 10981 11318 7616

256 2156 1526 6140 4806 13263 10551 4954 3672 34980 21857 20954 13966 17425 11332

Table 4: Comparison of the number of cut edges for varying number of partitions. The HARPer results are based on 10 elgenvectors. The
MeTiS results are based on version 2.0.

# of
sets

2

4

8

16

32

64

128

256

SPIRAL LABARRE STRUT BARTH5 HSCTL MACH95 FORD2

HARPer Me'IaS2 HARPtx Me'HS2 HARPer Me"I3S2 HARPer MeTiS2 HARPer MeTiS2 HARPer MeTiS2 HARPer MeTiS2

0.011 0.02 0.043 0.10 0.103 0.19 0.149 0.28 0.157 0.48 0.298 0.79 0.488 1.18

0.013 0.03 0.078 0.22 0.137 0.42 0.286 0.60 0.300 1.00 0.583 1.62 0.989 2,40

0.020 0.05 0.118 0.33 0.208 0.65 0.429 0.88 0.451 1.84 0.871 2.42 1.424 3.59

0.029 0.11 0.161 0.50 0.279 0.92 0.578 1.21 0.605 2.24 1.166 3.17 1.899 4.78

0.042 O.14 0.207 0.70 0.355 1.22 0.776 1,59 0.765 2.93 1.460 4.29 2.377 5.92

0.062 0.21 0.261 0.90 0.437 1.65 0.920 2.08 0.926 3.76 1.769 5.46 2.865 7.50

0.098 0.28 0.332 1.18 0.536 2.17 1.057 2.70 1.104 4.90 2.089 6.77 3.371 9.23

0.164 0.45 0.441 1.56 02670 2.87 1.257 3.29 1.315 5.97 2.489 8.23 3.901 11.35

Table 5: Comparison of the execution times in seconds on a single-processor SP2. The HARPer results are based on 10 eigenvectors.
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Execution times on up to 64 processors of an SP2 and T3E are

presentedinTables 7 and 8 when parallelHARPa isappliedto the

two largest test meshes. For a given number P > 1 of processors, the

meshes were partitioned into 20P, 21p ..... 256 subgrids. For com-

parison, the times for the serial version of HARPa are also shown

for up to 256 partitionS. As indicated earlier, the current parallel im-

plementation can be vastly improved. The main purpose of
presenting these results here is to demonstrate that HARP can be ef-

fectively parallelized.

Three key observations can be made from these results. First, the

parallelcode shows modest speedup as the number of processors in-

creases while keeping the total number of partitions unchanged. For

example, the speedups are about 5.5X, 6.5X; and 7.6X on 64 proces-

sors for 64, 128, and 256 partitions, respectively. These are very

preliminary results for the parallel version of HARP and significant

improvement is expected in the near future. Second, the partitioning

time increases less than linearly with the number of partitions for a

fixed number of processors. In fact, when i6 processors are used, the

partitioning time for 256 partitions is only 20% more than that for 16

partitions. With more and more processors, the partitioning time ac-
tually seems to become independent of the number of partitions.

Third, the partitioning time gradually decreases with the number

of processors when the ratio of the number of partitions to the num-

ber of processors is held constant. This can be observed by scanning

diagonally across the entries in Tables 7 and 8. For example, on the

SP-2, the time to partition the FORD2 grid into four subgrids on one

processor is 0.989 sees but only 0,528 Sees for 256 subgrids on 64

processors. Similar results were observed for all the other grids. The

relative reduction in the partitioning time with increasing number of
processors is more pronounced as the ratio of the number of subgrids
to the number of processors increases. This is because when S > P,

there is no communication after log P iterations, These results and
observations demonstrate that HARP will remain a viable partitioner

on massively-parallel systems.

6 HARP in the Dynamic Load BalanCer JOVE

The primary application of HARP is to dynamically partition adap-
tive grids at runtime [3]. The motivation for HARP originated from

the context of load balancing unstructured adaptive grid eomputa-

#of

processors 2

1

2

4

8

16

32
4

MACH95 FORD2

4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

0.298 0.583 0.871 1.166 1.460 1.769 2.089 2.489 0.488 0.989 1.424 1.899 2.377 2.865 3.371 3.901

0.250 0.370 0.498 0.625 0.756 0.889 1.036 1.200 0.411 0.609 0.818 1.024 1.234 1.448 1.671 1.912
• 0.324 0.381 0.446 0.511 0.577 0.649 0.732 * 0.532 0.627 0.730 0.835 0.940 1.053 1.172

• * 0.337 0.363 0.396 0.429 0.466 0.508 * * 0.553 0.595 0.648 0.701 0.755 0.815

• • • 0.332 0.343 0.359 0.377 0.398 • • 0.544 0.559 0.586 0.616 0.644

• * 0.328 0.328 0.338 0.349 • • 0.532 0.535 0.550 0.563

• * * 0.322 0.324 0.325 ..... 0.523 0.518 0.528

Table 7: Partitioning times on an IBM SP2. • indicates not applicable.

#of

processors

1
2

4

8
16

32

64

MACH95

2 4 8 16 32 64 128 256

0.288 0.643 0.997 1.342 1.664 1.975 2.280 2.609
0.373 0.554 0.733 0.906 1.070 1.227 1.385 1.552

• 0.498 0,586 0.673 0.753 0.830 0.905 0.988

• 0.512 0.555 0.596 0.634 0.673 0.713
• * • 0.493 0.514 0,533 0.552 0.575

.... 0.474 0.484 0.494 0.505

..... 0.459 0.464 0.469

FORD2

2 4 8 16 32 64 128 256

0.477 1.052 1.621 2A88 2.748 3.266 3.761 4.270

0,614 0,906 1.195 1.484 1.773 2.037 2.292 2.547

• 0.818 0.959 1.107 1.250 1,379 1.506 1.631

• • 0.843 0.913 0.983 1.047 1.107 1.168

• " - 0.817 0.849 0.882 0.913 0,943

.... 0.780 0.796 0.813 0.827

..... 0.758 0.766 0.773

Table 8: Partitioning times on a Cray T3E. • indicates not applicable.



tionson distributed-memory machines [23,24]. The dynamic load

balancing framework lOVE is described in [23] and its impact on

adaptive grid computations are reported in [24]. The framework em-

ploys dual-graph representation. CFD flow solvers usually solve for

the solution variables at the vertices of the computational mesh. A

parallel implementation requires a partitioning of the computational

mesh such that each element belongs to a unique partition. Commu-

nication is required across faces that are shared by adjacent
tetrahedral elements residing on different processors. Hence for the

purposes of partitioning, we consider the dual of the original
mesh such as MACH95,

The tetrahedral elements of the CFD mesh are the vertices of the

dual graph. An edge exists between two dual graph vertices if the

corresponding elements share a face in the original mesh. A graph

partitioning of the dual graph thus yields an assignment of tetrahedra

to processors. Each dual graph vertex has two parameters associated

with it. The computational weight, Wcomp, is a measure of the work-

load for the corresponding element of the CFD mesh. The

communication weight, Wcomm, measures the cost of moving the el-

ement from one processor to another. The connectivity pattern and

the Wcomp determine how dual graph vertices should be grouped to

form partitions that minimizes the disparity in the partition weights.

The wcomm determine how partitions should be assigned to proces-

sors such that the cost of data movement is minimized.

The most significant advantage of using a dual graph is that its

complexity and connectivity remains unchanged during the course

of an adaptive computation. This is because the vertices of the dual
graph correspond to the elements of the initial CFD mesh. The parti-

tioning and load-balancing times therefore depend only on the initial

problem size. New grids obtained by mesh adaption are translated to

the two weights, Weomp and weomm, for every element in the initial
CFD mesh.

To put HARP in the dynamic load balancing perspective, we
demonstrate HARP at work using a set of snap shots taken in real

world situations. In particular, we use four helicopter meshes de-
rived from MACH95. The initial mesh has 60968 tetrahedral

elements and 78343 edges. As the simulation progresses, mesh re-

finement (coarsening) takes place, resulting in the change in mesh

size. Table 9 shows the change in the number of vertices, edges, and
elements over three refinements. The initial mesh size and their re-

spective values are listed in the first row.

adaption
number

0

1

2

3

# of elements # of 16 partitions

(weight) edses cuts time

60968 78343 5685 1.O24

179355 220077 5229 1.024

389947 469607 4833 1.O23

765855 913412 4539 1.021

256 partitions

cuts time

20204 2.176

18191 2.177

15536 2.177

14039 2.178

Table 9: Runtime behavior of Mach95 over three mesh adaptions.

After the first adaption, the size has grown to 179355 elements

and 220077 edges. In each adaption, an element can be refined up to

8 smaller elements. After the three adaptions, the mesh size has

grown to 765855 elements, which is an order of magnitude larger
than the initial mesh. Runtime load balancing is indispensable when

such mesh adaption is implemented on a distributed-memory multi-

processor. It is highly likely that some processors will have a very

large number of elements while some perhaps have little change
since mesh refinement tends to be localized over time. Table 9 also

presents an important feature of HARP in JOVE, where the number

of edge cuts decreased from 5685 to 4539 even if the mesh size has

grown more than an order of magnitude.

The dual-graph approach employed in the dynamic load balanc-

ing framework JOVE allows the mesh size to grow but the

complexity of mesh partitioning remainfixed. Timing results in Ta-

ble 9 clearly show that the mesh partitioning times are essentially

fixed. Again, the reason is because HARP is applied to the dual

mesh which maintains the initial mesh structure but changes the

weight of the original elements.

The mesh partitioner HARP as well as the load balancing frame-

work JOVE is currently being applied to rotorcraft fluid dynamics to

study of he!ieopter wake systems. Several plans are currently under-

way to apply JOVE and HARP, including simulations of deep

submieron semiconductor modeling and computational nano-tech-

nology at the Numerical Aerospace Simulation of NASA Ames

Research Center and NERSC at Lawrence Berkeley Laboratory.

7 Summary

Computational science and engineering problems involve runtime

mesh partitioning when implemented on distributed-memory multi-

processors. We have presented in this paper a fast spectral

partitioner, called HARP, which can qniekly partition realistically-

sized meshes while maintaining the partition quality of spectral par-

titioners such as recursive spectral bisection. To demonstrate the

effectiveness of HARP, we have selectedvarious2D and 3D meshes

with the size of up to 100J96 vertices, Both the serial and parallel

versions of HARP have been implemented on two distributed-mem-

ory platforms, IBM SP-2 and Cray T3E, installed respectively at
NASA Ames and NERSC of Lawrence Berkeley Laboratory,

Several types of experiments have been performed to find the ef-
fects of the number of eigenvectors onpartition quality, the trade-off

of the number of elgenvectors with respect to the partition quality

and computation time, and the fast partitioning capabilities in the
context of dynamically changing mesh adaptiom We have identified

that the larger meshes tend to show higher partition quality for more

partitions due to the free-grained control on how partitions are gen-
erated. The partition quality has improved as the number of

eigenvectors increases at the expense of increased computation

time. We have also observed that the partition quality improves as
the number of partitions increases.

The performance of HARP has been compared against other par-

titioners such as MeTiS2. Experimental results have indicated that
the execution times of HARP are three to four times faster than Me-

TiS 2.0. The solution quality of HARP, on the other hand, is poorer
than MeTiS2. We fred that the overall difference is between 30% to

40%. It should be noted that the HARP results arebased on 10 eigen-

vectors. The fact that the partition quality is somewhat poor is not a

major concern when dealing with adaptive computations. Since par-

titioning has to be performed fairly frequently, it is more important

to reduce the partitioning time than the number of edge cuts.

The parallel version of HARP has been implemented in Message

Passing Interface. It can run on any platform which supports MPI.

The sole purpose of the preliminary parallel version is to demon-
strate that the serial HARP can be effectively parallelized on

distributed-memory machines. The most time-consuming step of the

partitioner has been parallelized and its effects have been significant
in terms of execution time. The largest mesh among those we used is

FORD2 for modeling a Ford car with 100,196 vertices and 222,246

edges. Parallel HARP has shown to partition FORD2 into 256 parti-

tions in 0.5 see on 64 processors.

The T3E version of HARP has been implemented in MPI. If

HARP were implemented in SHMEM with which T3E performs best,

the performance of HARP can be further improved. Regardless of

the paradigm used for implementation, parallel HARP can further

reduce the current partitioning time since less than half the individ-

ual modules of HARP are parallelized in the preliminary version.

Our immediate plan is to parallelize the sorting step, which is cur-
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rently the most time consuming step. The MPI version will be
converte,d to a SHMEMversion in the near future.

The primary application of HARP is to dynamically ,partition
adaptive grids. In this respect, wehave put HARP to work in the dy-
namic load balancing framework JOVE. Four snap shots of a
helicopter blade mesh called MACH95 have been drawn from real-
world applications to test the capability of HARE After three mesh
adaptions, the mesh has grown from 60,968 to 765,855 vertices. The
mesh partitioning times; on the other hand, have remained constant
because of the dual graph approach, We have also found that the
number of edge cuts decreased from 5685 to 4539 even if the mesh
size has grown more than an order of magnitude. This fLxed parti-
tioning times and the decrease in edge cuts have indicated that graph
partitioning can now be truly embedded in dynamically-changing
re.al-wodd applications.
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